C10	0.3452 (2)	0.3880 (5)	0.1767 (3)	3.0 (2)
CH	0.3470 (2)	0.2478 (5)	0.1438 (4)	3.8 (2)
C12	0.2984 (2)	0.1524 (6)	0.1228 (4)	4.9 (2)
C13	0.2486 (2)	0.1957 (6)	0.1351 (4)	5.2 (3)
C14	0.2463 (2)	0.3337 (7)	0.1684 (4)	4.6 (2)
C15	0.2944 (2)	0.4304 (5)	0.1890 (3)	3.9 (2)
C20	0.4090 (2)	0.6416 (5)	0.2867 (3)	2.9 (2)
C21	0.4099 (2)	0.7926 (5)	0.2749 (3)	3.7 (2)
C22	0.4187 (2)	0.8864 (5)	0.3506 (4)	4.3 (2)
C23	0.4265 (2)	0.8321 (6)	0.4382 (4)	4.3 (2)
C24	0.4253 (2)	0.6819 (6)	0.4514 (4)	4.4 (2)
C25	0.4169 (2)	0.5888 (5)	0.3759 (3)	4.0 (2)
C30	0.3826 (2)	0.6170 (4)	0.0856 (3)	2.8 (2)
C31	0.3216 (2)	0.6289 (5)	0.0202 (3)	3.9 (2)
C32	0.3050 (2)	0.7111 (6)	0.0640 (4)	4.5 (2)
C33	0.3475 (2)	0.7825 (5)	-0.0825 (3)	4.1 (2)
C34	0.4079 (2)	0.7709 (5)	-0.0189 (4)	4.2 (2)
C35	0.4249 (2)	0.6886 (5)	0.0645 (3)	3.7 (2)

Table 2. Selected geometric parameters (Å, °)

Cul-P5	2.243 (1)	C20-C21	1.387 (6)
CulO2	2.191 (4)	C20-C25	1.382 (6)
P5-C10	1.821 (4)	C21—C22	1.381 (6)
P5-C20	1.820(4)	C22—C23	1.367 (7)
P5C30	1.823 (4)	C23-C24	1.385 (7)
O2N3	1.245 (5)	C24-C25	1.378 (6)
C10C11	1.381 (6)	C30C31	1.390 (6)
C10-C15	1.390 (6)	C30—C35	1.375 (6)
C11—C12	1.391 (6)	C31-C32	1.392 (6)
C12—C13	1.371 (7)	C32—C33	1.357 (7)
C13C14	1.366 (8)	C33—C34	1.372 (6)
C14-C15	1.391 (6)	C34C35	1.382 (6)
P5-Cu1-P5'	127.75 (7)	C13-C14-C15	119.9 (5)
P5Cu1O2	110.2 (1)	C10-C15-C14	120.7 (4)
P5-Cu1O2'	115.4 (1)	P5-C20-C21	123.1 (4)
02Cu102'	56.7 (2)	P5C20C25	118.2 (3)
Cu1-P5-C10	115.5 (2)	C21-C20-C25	118.1 (4)
Cu1-P5-C20	110.0(1)	C20-C21-C22	120.5 (4)
Cu1-P5-C30	117.2(1)	C21C22C23	120.5 (5)
C10-P5-C20	104.6 (2)	C22—C23—C24	119.9 (5)
C10-P5-C30	104.1 (2)	C23—C24—C25	119.3 (5)
C20-P5-C30	104.1 (2)	C20-C25-C24	121.7 (5)
Cu1	95.0 (4)	P5-C30-C31	122.8 (3)
02-N3-02'	113.2 (6)	P5-C30-C35	119.0 (3)
P5C10C11	117.8 (3)	C31-C30-C35	118.2 (4)
P5-C10-C15	123.4 (4)	C30-C31-C32	119.8 (4)
C11-C10-C15	118.7 (4)	C31-C32-C33	120.9 (4)
C10-C11-C12	120.0 (4)	C32C33C34	119.9 (4)
C11-C12-C13	120.6 (5)	C33—C34—C35	119.6 (4)
C12C13C14	120.0 (5)	C30-C35-C34	121.6 (4)

All calculations were performed using the *TEXSAN/TEXRAY* crystallographic software package (Molecular Structure Corporation, 1985). Structure solution: *MITHRIL* (Gilmore, 1984), *DIRDIF* (Beurskens, 1984).

We thank Professor Doyle Britton for his work on the structure determination. Funding in support of this research was provided by the National Institutes of Health (GM47365), the Searle Scholars Program/Chicago Community Trust, and the National Science Foundation (National Young Investigator Award).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1045). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures – an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- Halfen, J. A., Mahapatra, S., Olmstead, M. M. & Tolman, W. B. (1994). J. Am. Chem. Soc. 116, 2173–2174.
- Halfen, J. A. & Tolman, W. B. (1994). J. Am. Chem. Soc. 116, 5475-5476.
- Hulse, C. L., Averill, B. A. & Tiedje, J. M. (1989). J. Am. Chem. Soc. 111, 2322-2323.
- Jackson, M. A., Tiedje, J. M. & Averill, B. A. (1991). FEBS Lett. 291, 41-44.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Messmer, G. C. & Palenik, G. J. (1969). Inorg. Chem. 8, 2750–2754. Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure
- Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Ruggiero, C. E., Carrier, S. M., Antholine, W. E., Whittaker, J. W., Cramer, C. J. & Tolman, W. B. (1993). J. Am. Chem. Soc. 115, 11285–11298.
- Tolman, W. B., Carrier, S. M., Ruggiero, C. E., Antholine, W. E. & Whittaker, J. W. (1993). *Bioinorganic Chemistry of Copper*, edited by K. D. Karlin & Z. Tyeklár, pp. 406–418. New York: Chapman and Hall.

Acta Cryst. (1995). C51, 217-219

Bis(diphenylphosphino)methanetetradecacarbonylhexairidium Dichloromethane Solvate

MARINELLA MAZZANTI AND RAYMOND ROULET

Institut de Chimie Minérale et Analytique, Université de Lausanne, Place du Château 3, CH-1005 Lausanne, Switzerland

KURT J. SCHENK

Institut de Cristallographie, Université de Lausanne, BSP Dorigny, CH-1015 Lausanne, Switzerland

(Received 11 November 1993; accepted 30 August 1994)

Abstract

The molecules of the title complex, μ -bis(diphenylphosphino)methane-*P*:*P'*-tetra- μ_3 -carbonyl-decacarbonyl-octahedro-hexairidium, [Ir₆(CO)₁₄(C₂₅H₂₂P₂)] are discrete monomeric units. Their coordinator polyhedron is derived from that of the red [Ir₆(CO)₁₆] isomer with a chelating dppm [bis(diphenylphosphino)methane] ligand replacing two equatorial terminal carbonyl groups in *cis* positions. The clusters display mirror symmetry with respect to the two P atoms. Ten CO groups are terminal and four are face-capping. Two of the face-capping groups are asymmetric, with Ir—C bond distances ranging from 1.97 (2) to 2.43 (2) Å. The molecule is fluxional in solution down to 160 K due to rapid CO scrambling on the NMR timescale.

Comment

The reaction of $[Ir_6(CO)_{16}]$ with bis(diphenylphosphino)methane (dppm) in a 1:1 molar ratio leads to the title product (1). In contrast with $[Rh_6(CO)_{14}-$ (dppm)], the crystal structure of which is known (Clucas, Harding & Maginn, 1988), the ¹³C NMR spectrum of a ¹³CO enriched (*ca* 30%) sample of (1) exhibits a single CO resonance down to 160 K in CD₂Cl₂/CHFCl₂. Here we report a structural characterization of (1) in the solid state.

The cluster compound (1) is neither isostructural with $[Rh_6(CO)_{14}(dppm)]$ (Clucas et al., 1988) nor with $[Rh_6(CO)_{14}(dppe)]$ [dppe is bis(diphenylphosphino)ethane] (Tunik et al., 1992). The coordination polyhedron is derived from that of the red $[Ir_6(CO)_{16}]$ (Garlaschelli et al., 1984) complex with the chelating dppm ligand replacing two equatorial terminal CO groups on adjacent Ir atoms. The molecule displays mirror symmetry with respect to the two P atoms, with ten terminal and four face-capping CO groups. The Ir-Ir bonds trans to the P atoms are significantly longer [2.803 (2) Å] than the other Ir-Ir bonds [mean 2.77 (1) Å] and than those of $[Ir_6(CO)_{16}]$ [mean 2.779 (1) Å]. The terminal [mean 1.12 (1) Å] and capping [mean 1.16 (3) Å] CO distances are quite comparable to the corresponding distances in $[Ir_6(CO)_{16}]$ [mean values 1.13 (1) and 1.19 (2) Å, respectively]. Two of the face-capping carbonyl groups are essentially symmetrical and two are asymmetric, with Ir-C distances ranging 1.97 (2)-2.43 (2) Å. This asymmetry is most likely due to the presence of the P donor ligand, which is a poorer π acceptor than the terminal CO groups. The fluxional behaviour in solution of the related compound $[Ir_6(CO)_{14}(dppe)]$, as studied using ¹³C NMR, is due to intramolecular CO scrambling, the process of

lowest activation energy being the $\mu_3 \rightarrow \mu_2$ conversion of two face-capping CO groups which exchange with vicinal terminal CO groups (Mihokova, 1993). The asymmetry found in the solid state for two of the face-capping carbonyl ligands of (1), which are somewhat displaced towards μ_2 bending, is consistent with the ground-state geometry leading to such dynamic behaviour.

Fig. 1. *ORTEP* (Johnson, 1965) representation (60% probability ellipsoids for Ir atoms) of the cluster. The labels of the carbonyl C atoms have been omitted for clarity, but correspond to the labels of their O atoms. [Symmetry code: (i) x, $\frac{1}{2} - y$, z.]

Experimental

A solution of $[Ir_6(CO)_{16}]$ (0.35 g) and dppm (0.084 g) in THF (70 cm³) was stirred at room temperature for 14 h under N₂. After evaporation to dryness, the dark red residue was dissolved in CH₂Cl₂ (5 cm³) and chromatographed on a plate of silica gel (2 mm thickness) using CH₂Cl₂/hexane (2.5:1) as eluent. Recrystallization from CH₂Cl₂/hexane at 248 K gave (1) (0.22 g, 52%). Analysis: calculated for C₃₉H₂₂Ir₆O₁₄P₂.-CH₂Cl₂, C 23.85, H 1.20, P 3.07%; found, C 24.13, H 1.12, P 3.22 %. The crystal comprised of {011}, {001}, {011} pinacoids and (101), (210), (100) pedions.

Crystal data

$[Ir_6(CO)_{14}(C_{25}H_{22}P_2)].CH_2Cl_2$	Mo $K\alpha$ radiation
$M_r = 2014.4$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 40
$P2_1/m$	reflections
a = 11.144 (3) Å	$\theta = 7 - 15.5^{\circ}$
b = 15.667 (4) Å	$\mu = 17.82 \text{ mm}^{-1}$
c = 13.048 (5) Å	T = 140 (2) K
$\beta = 96.32 (3)^{\circ}$	Prism
V = 2264.2 (12) Å ³	$0.32 \times 0.18 \times 0.11 \text{ mm}$
Z = 2	Dark orange
$D_x = 2.952 \text{ Mg m}^{-3}$	-

Data collection

Syntex P2 ₁ diffractometer
$\theta/2\theta$ scans
Absorption correction:
Gaussian by integration
from crystal shape
$T_{\min} = 0.06, T_{\max} = 0.23$
7089 measured reflections
4179 independent reflections
2861 observed reflections
$[I > 2\sigma(I)]$

Refinement

2	
Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.0951$	$F_c^* = kF_c[1 +$
$wR(F^2) = 0.2013$	$0.001(F_c)^2 \lambda^3 / \sin(2\theta)]^{-1/4}$
S = 2.129	Extinction coefficient:
4176 reflections	0.00062 (12)
250 parameters	Atomic scattering factors
H atoms not located	from International Tables
$w = 1/[\sigma^2(F_o^2) + 2P]$	for Crystallography (1992,
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = 0.102$	6.1.1.4)
$\Delta \rho_{\rm max} = 6.00 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -9.95 \ {\rm e} \ {\rm \AA}^{-3}$	

 $R_{\rm int} = 0.086$

 $l = 0 \rightarrow 15$

3 standard reflections

reflections

monitored every 97

intensity decay: <75%

 $\theta_{\rm max} = 25.06^{\circ}$ $h = -13 \rightarrow 13$ $k = 0 \rightarrow 18$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	y	Z	U_{eq}
lrl	0.16870(11)	1/4	0.44678 (13)	0.0202 (4)
Ir2	0.11221 (7)	0.16205 (6)	0.26224 (10)	0.0201 (3)
Ir3	-0.10533(11)	1/4	0.22893 (14)	0.0242 (4)
Ir4	-0.05151 (8)	0.16229 (6)	0.41066 (10)	0.0224 (3)
C11	0.3352 (26)	1/4	0.4687 (33)	0.022 (3)
011	0.4389 (17)	1/4	0.4969 (21)	0.022 (6)
C12	0.1630 (32)	1/4	0.5919 (35)	0.025 (9)
012	0.1530 (22)	1/4	0.6717 (26)	0.045 (7)
C2	0.0615 (21)	0.0651 (16)	0.1902 (24)	0.027 (6)
02	0.0239 (19)	0.0067 (15)	0.1415 (21)	0.062 (7)
C3	-0.2002(19)	0.1627 (16)	0.1560 (25)	0.026 (2)
03	-0.2597 (15)	0.1121 (11)	0.1229 (16)	0.032 (5)
C41	-0.1111(18)	0.0552 (14)	0.3648 (21)	0.016 (5)
O41	-0.1471 (15)	-0.0097 (10)	0.3317 (18)	0.037 (5)
C42	-0.0737(19)	0.1408 (17)	0.5479 (25)	0.024 (2)
O42	-0.0936 (15)	0.1307 (13)	0.6273 (18)	0.040 (5)
C124	0.1547 (17)	0.1145 (14)	0.4013 (20)	0.012 (5)
O124	0.1965 (12)	0.0539 (10)	0.4434 (15)	0.022(1)
C232	0.0361 (29)	1/4	0.1301 (35)	0.023(1)
O232	0.0449 (19)	1/4	0.0475 (23)	0.028 (3)
C434	-0.1949 (27)	1/4	0.3769 (31)	0.019 (8)
O434	-0.3012 (17)	1/4	0.3950 (22)	0.023 (4)
С	0.3915 (22)	1/4	0.2428 (25)	0.003 (6)
Р	0.3036 (5)	0.1509 (4)	0.2105 (6)	0.016(1)
C21	0.3989 (18)	0.0724 (15)	0.2772 (25)	0.026 (5)
C22	0.3583 (23)	-0.0130(16)	0.2777 (28)	0.040 (5)
C23	0.4270 (24)	-0.0771 (16)	0.3258 (26)	0.037 (5)
C24	0.5396 (24)	-0.0541 (20)	0.3886 (29)	0.050 (7)
C25	0.5778 (20)	0.0299 (19)	0.3880 (23)	0.032 (4)
C26	0.5099 (18)	0.0967 (19)	0.3347 (25)	0.033 (5)
C31	0.3179 (19)	0.1255 (15)	0.0740 (22)	0.018 (5)
C32	0.2229 (22)	0.1189 (16)	0.0018 (30)	0.041 (7)
C33	0.2352 (24)	0.1026 (18)	-0.1030 (30)	0.047 (7)
C34	0.4523 (26)	0.1025 (21)	-0.0544 (30)	0.049 (9)
C35	0.3562 (23)	0.0947 (19)	~0.1288 (30)	0.050 (8)
C36	0.4372 (21)	0.1202 (17)	0.0495 (25)	0.029 (7)

Ci1 0.1	329 (19)	-0.1541	(14)	0.1075 (23)	0.088 (7)
Cl -0.1	456 (37)	1/4		-0.1535 (43)	0.05(1)
Cl2 -0.2	804 (29)	0.1988	(20)	-0.1143 (35)	0.18(2)
Table 2	2. Select	ed geon	netric	parameters	(Å, °)
Ir1—Ir2	2.	786 (2)	Ir1-		1.90(4)
Ir1-Ir4	2.	807 (2)	Ir2-	C2	1.84 (3)

Ir2-Ir3	2.781 (2)	Ir3—C3	1.92(3)	
Ir2—Ir4	2.803 (2)	Ir4C41	1.88 (2)	
Ir2Ir2'	2.756 (2)	Ir4C42	1.87 (3)	
Ir3Ir4	2.749 (2)	Ir1-C124	2.20(2)	
Ir4Ir4 ⁱ	2.748 (2)	Ir2—C124	1.97 (2)	
Ir2P	2.313 (6)	Ir4-C124	2.43 (2)	
C—P	1.859 (15)	Ir2C232	2.30 (4)	
PC21	1.79 (2)	Ir3-C232	2.14 (4)	
P-C31	1.85 (3)	Ir3—C434	2.27 (4)	
Ir1C11	1.85 (3)	Ir4—C434	2.12(2)	
Ir2-Ir1-Ir4	60.16 (5)	PCP'	113.2 (14)	
Ir2 ⁱ —Ir2—Ir4	89.92 (3)	C-P-Ir2	110.5 (8)	
Ir4—Ir3—Ir2	60.91 (5)	Ir-C-O (term., mean)	174 (1)	
Ir4 ⁱ —Ir4—Ir2	90.08 (3)	Ir-C-O (capping, mean)133 (2)		
P-Ir2-Ir2 ⁱ	94.33 (15)			

Symmetry code: (i) $x, \frac{1}{2} - y, z$.

The rather strong anisotropic decay was accounted for by scaling on three check reflections. An absorption correction based on the observed morphology and using Gaussian integration improved the R_{int} value from 0.18 to 0.086. The structure was solved by interpreting Patterson and subsequent Fourier maps.

There is a disordered molecule of crystalline dichloromethane that seems to participate in hydrogen bonding between clusters along the b axis.

The structure was solved using SHELXS86 (Sheldrick, 1985) and all other calculations were made using SHELX93 (Sheldrick, 1993).

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: NA1076). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Clucas, J. A., Harding, M. M. & Maginn, S. J. (1988). J. Chem. Soc. Chem. Commun. pp. 185-187.
- Garlaschelli, L., Martinengo, S., Bellon, P. L., Demartin, F., Manassero, M., Chiang, M. Y., Wei, C.-Y. & Bau, R. (1984). J. Am. Chem. Soc. 106, 6664-6667.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Mihokova, M. (1993). Doctoral thesis, Univ. of Lausanne, Switzerland.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Sheldrick, G. M. (1993). SHELXL93. Univ. of Göttingen, Germany.

Tunik, S. P., Vlasov, A. V., Gorshkov, N. I., Starova, G. L., Nikol'skii, A. B., Rybinskaya, M. I., Batsanov, A. S. & Struchkov, Y. T. (1992). Organomet. Chem. 433, 189-201.